
Methodology

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

1–17

� The Author(s) 2022

DOI: 10.1177/00375497221099548

journals.sagepub.com/home/sim

Integrating I-DEVS and schedulability
methods for analyzing real-time
systems constraints

Braulio A Mello1 and Gabriel AWainer2

Abstract
The design of embedded real-time systems (RTS) is challenging due to the criticality of the timing constraints of these
systems. Various informal and formal methods for RTS design have been proposed, both in the design space and the
real-time execution at the hardware level, but many of these methods are not effective when the complexity of the sys-
tem scales up. Here, we discuss a new method to integrate a modeling (and simulation) formalism that allows designing
complex systems specifications for real-time constraints called Imprecise-DEVS (I-DEVS), and the mapping of such high-
level models into a real-time task model. This method allows analyzing real-time constraints both at the high level of
modeling as well as the low level of the tasks executed by the processing units and the Operating System. A new method
to study the schedulability of the task models is proposed. The method provides a design analysis space from the model
level, up to the individual tasks, with a focus on the schedulability of real-time constraints under transient overloading
conditions.

Keywords
Imprecise-DEVS, real-time systems, schedulability analysis, simulation

1. Introduction

Embedded systems are tightly coupled hardware/software

systems designed to perform specific functions.

Nowadays, these embedded systems are ubiquitous (medi-

cal devices, vehicles, industrial control systems, etc.) and

many of them have real-time requirements. They normally

combine hardware, software, physical devices and envi-

ronment they control, and must satisfy critical timing

requirements,1 which makes their design challenging.

Different design methods have been proposed for building

real-time systems, including informal approaches such as

real-time structured analysis or formal approaches such as

Petri Nets or process algebras.2 These methods can be

used to define and study the timing restrictions of the sys-

tem at a high level; for instance, in Haur et al.3 where

model checking is used to study schedulability using a

Stopwatch Petri Net that allows determining under which

temporal conditions the application is schedulable. These

methods are useful at the design stage but cannot deal with

implementation issues or low-level design at the processor

scheduling level, i.e., these formal methods cannot be

applied to study scheduling of computations under timing

constraints in real-time systems. In addition, the bridge

between formal methods for design, and detailed schedul-

ing problems, has not been explored. Combining methods

to mitigate their low effectiveness in earlier or later phases

of development of the real-time systems could increase

the design cost and complexity.4,5 In addition, Modeling

and Simulation (M&S) has been shown to be useful in

reducing the effort and the cost for the overall designing

process of real-time systems bypassing the difficulties of

other approaches.6 M&S allows the designer to experiment

with varied scenarios in terms of system loads, hardware/

software configurations, in a virtual environment with

reduced risk and improved overall costs. Nevertheless,

informal M&S methods cannot be used to provide formal

guarantees on the correctness of the system under

development.

1Federal University of Fronteira Sul, Brazil
2Systems and Computer Engineering Department, Carleton University,

Canada

Corresponding author:

Braulio A Mello, Federal University of Fronteira Sul, 108 Av. Fernando

Machado, Chapeco 89815-899, SC, Brazil.

Email: braulio@uffs.edu.br

https://doi.org/10.1177/00375497221099548
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00375497221099548&domain=pdf&date_stamp=2022-05-21

This research focuses on the issues discussed above by

using a formal M&S approach like the Discrete-Event

Systems specifications (DEVS)7,8 formalism. DEVS is ade-

quate to model real-time systems as it provides a homoge-

neous mechanism for analysis based on a combination of

formal methods, modeling, and simulation. A formal M&S-

driven approach provides a precise method for defining

models and provides the tools for analyzing models for-

mally as well as performing risk-free simulation-based tests.

The use of DEVS for development of real-time system

has been explored in the past; in this research, we intro-

duce new methods that allow designing real-time systems

with real-time deadlines based on the DEVS formalism.

The method permits building real-time models that can be

later translated to task models for scheduling requirement

analysis. We are interested in exploring methods that deal

with real-time systems going through conditions that trig-

ger unexpected responses that affect processing capacity

(called transient system overloads). We want to study how

to guarantee DEVS models that can execute predictably in

a target platform using scheduling algorithms that will per-

form adequately under these transient overloads. The tim-

ing faults that inevitably occur whenever the real-time

system becomes overloaded can be handled using the

well-established theory of imprecise computation (IC).9

This formal method showed to be a good solution to deal

with overloaded real-time systems by discarding noncriti-

cal computations in organized fashion.10 To organize the

dismissal of noncritical computations, IC theory identifies

some of the computations as mandatory, and others as

optional. The mandatory parts are those that will affect the

correctness of the results,11 and they must be fully exe-

cuted. The optional parts affect mostly the quality of the

result, and they could be discarded if they cannot meet the

deadlines. The discarding of optional computations can be

done in an organized way, providing graceful

degradation.12

The Imprecise-DEVS (I-DEVS)13 method combines

the formal advantages of DEVS and IC, providing a

mechanism to define formal models with imprecise com-

puting. New I-DEVS-based techniques to overcome over-

run conditions under imprecise computing approach are

presented in Wainer and Moallemi.14 Although I-DEVS

provides a mechanism for defining and studying real-time

models and their timing constraints, we need to translate

the models into executable specifications into running in

real-time computing hardware. To make this happen, we

convert the models into real-time tasks, and those tasks

execute predictably. Since there is no possibility to antici-

pate the new occurrences of mandatory or optional compu-

tations in those real-time systems at runtime, we need to

provide schedulability analysis15 of the executable model

with the goal of achieving predictability16 of the scheduled

tasks. Schedulability analysis considers a set of computa-

tions and predicts whether each one of the computations

will meet their deadlines. If all the computations can be

guaranteed to complete before their deadlines, the set is

said schedulable. The methods we propose here are the

first existing techniques that can provide an integrated

method for designing predictable schedules for DEVS

models, in particular when the models under execution

experience transient overloading. The method composes

an I-DEVS-based infrastructure for designing hard real-

time systems, which is used to design the real-time system

as a DEVS coupled model with IC components. The mod-

els can be formally verified, and we propose a technique

to convert the high-level models into computational units

to execute in real-time hardware. These computational

units are then represented as real-time tasks, and a sche-

dulability analysis of the DEVS computational units is

provided. The schedulability analysis and modeling tech-

niques are enhanced by including imprecise computing

theory. The tests allow studying the system response under

overloading conditions by applying schedulability testing

over mandatory and optional computations. The schedul-

ability algorithms are based on the worst response time

(WRT) and on the worst-case execution time (WCET)

methods15,17,18 using mandatory-first, priority-based, and

earliest deadline first approaches.

The proposed method allows:

� Defining real-time applications as DEVS models,

including behavior of the real-time application in

atomic models, and integrating various real-time

subcomponents into coupled models.
� Enhancing those models using I-DEVS and divid-

ing the behavior of the models into mandatory and

optional subcomponents.
� The runtime execution algorithms, as well as the

simulation algorithms, act on the I-DEVS models

and can be used to simulate system behavior as well

as executing the models at runtime. In both cases,

when transient system overloads occur (or are trig-

gered in a simulation), the models react according

to imprecise computing theory.
� The models are subsequently transformed into com-

putational units that are represented as task models

in a real-time timeline. The timeline can be for-

mally analyzed for schedulability, integrating thus

the high-level I-DEVS models and the low-level

task execution, providing a robust method to ana-

lyze and guarantee timeliness of the real-time appli-

cation, both under steady-state and overloading

conditions.

The rest of the paper will discuss these issues as follows:

the next section summarizes the scheduling and schedul-

ability analysis of real-time systems under IC, and it intro-

duces the Imprecise-DEVS formal definition. Section 3

presents the assumptions of the scheduling and

2 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

schedulability analysis in accordance with the Imprecise-

DEVS. Section 4 describes the formulation of schedulabil-

ity testing, and the DEVS algorithms to support the sche-

dulability procedures. Section 5 presents a schedulability

testing scenario. Section 6 concludes the paper with a

summary of future work.

2. Background

As discussed in the introduction, independent of their fea-

tures, purpose, or complexity, all embedded real-time sys-

tems must deal with timing constraints in dependable

fashion. Timing constraints issues can be addressed at the

high-level design process19 by using modeling methods

such as timed automata20 and model checking.19,21 Such

methods address the design timing constraints at high

level, guaranteeing the correctness of the design in terms

of the timeliness requirements. Nevertheless, these theore-

tical results are based on ideal conditions, and when

deployed in a hardware target platform, there are numer-

ous real-world constraints that affect the timeliness analy-

sis produced by the high-level designs, ranging from

interrupt latency, sensor delays, failures in hardware, pro-

cessor scheduling, and contention to access memory.

These various factors make the timeliness analysis only

partially useful. At the low level, we need to consider

other aspects, starting by schedulability at the level of

tasks (and other resources) at runtime, and this should con-

sider timing and resource constraints2 that are different

than those studied by a high-level design. Bridging the

gap between these two types of models needs exhaustive

exploration, and our research introduces a new method to

link high-level and low-level models using DEVS formal

modeling. We also provide imprecise computing theory to

deal with overloading conditions, extending schedulability

tests (including mandatory and optional imprecise compu-

tations). This section discusses the different concepts

related to this area of research, including I-DEVS formal

definitions, real-time scheduling, and imprecise computing

methods.

2.1. Schedulability analysis and scheduling of real-
time systems

Schedulability analysis of real-time systems15,22–25 is use-

ful to predict whether a set of computations will meet their

deadlines according to their timing constraints. A set of

computations is said schedulable if all the computations

can be guaranteed to complete before their deadlines. One

of the main challenges on real-time systems is to find a

feasible method for evaluating the schedulability of com-

putations using a well-defined scheduling algorithm. Most

schedulability analysis methods are based on a task model

where a computation transforms an initial state with input

values to a final state with output values.

Real-time schedulers decide which computations should

be executed next. It assumes the WCETs, the deadlines,

and the priorities of the computations are known. The most

common real-time systems schedulers are based on prior-

ity.26 The rate monotonic (RM) and the deadline mono-

tonic (DM)9 algorithms work dynamically with static

priority. RM uses a periodic scheduler, and it assigns high

priorities to the computations with the shortest periods.

DM assigns high priorities to the computations with the

nearest deadline, which must be equal to or less than the

period.27 The earliest deadline first (EDF) works dynami-

cally, with static or dynamic priority, by calculating the

priorities at runtime while the scheduling is executed. The

computations with the earliest deadlines have the highest

priorities. It is considered optimal on single processor sys-

tems (when the computing resource is not overloaded).28

The foundational article presented in Ramaritham and

Stankovic29 defines four types of scheduling algorithms

based on these principles.

� Static table-driven: the schedulability analysis is

done prior to the execution of the system, in static

fashion, and the resulting schedule (in the form of a

table used to schedule the system tasks) is used at

runtime. The schedule cannot be changed.
� Static priority-driven preemptive: the schedulability

analysis is done in static fashion, as above, and the

computation with the highest priority is always exe-

cuted first. If a higher priority task becomes avail-

able, executing tasks with lower priority can be

preempted.
� Dynamic planning-based: the schedulability analy-

sis is done at runtime, in dynamic fashion, and a

computation is executed only if its WCET is less

than its deadline.
� Dynamic best effort: there are no guarantees to

ensure that the computation will meet the deadline.

In general, static approaches are applicable to periodic

computations where the tests are performed statically, and

the resulting scheduling table is highly predictable.

However, this approach is not flexible since any change

on a computation could affect the scheduling table. On the

contrary, dynamic approaches can provide flexibility, fea-

sibility, and predictability. When a computation arrives,

these approaches are flexible for creating a new feasible

schedule including the new computation before its execu-

tion begins. We can predict if the computations will meet

their deadlines, making dynamic approaches more suitable

for integrating schedulability analysis.

Baker30 introduced schedulability tests over EDF and

DM scheduling. Given a schedule of a sequence of

Mello and Wainer 3

computations (defined as a window) with their release

times and WCET, the tests can identify the earliest possi-

ble missed deadline. The WCET can be specified by meth-

ods such as code analysis18 or probabilistic

techniques.31,32 The feedback-directed optimization pro-

cess33 uses compiler technology called to derive a WCET

profile for a program that can be implemented in main-

stream compilers, instead of using specialized compilers.

A survey discussing recent contributions on estimation

and optimization of WCET is presented in Meng et al.34

Zhang and Burns15 showed that dynamic schemes using

WCET are effective for sufficient schedulability analysis

under EDF scheduling with arbitrary relative deadlines.

Kuo et al.23 presented new schedulability tests for single

processor systems with heavy loads. Gunzel et al.35 pro-

posed two schedulability analysis methods for EDF on

uniprocessor systems to keep the correctness when a com-

putation task assigned to the processor may suspend itself.

Sun and Lipari36 presented a schedulability test for spora-

dic computations scheduled by global fixed priority on a

multiprocessor system using the linear hybrid automata

(LHA) formalism to represent the scheduler and the com-

putations. The missed deadline conditions are modeled as

errors in the automata. Guo et al.37 use directed acyclic

graphs to model parallel tasks, and they present a metho-

dology to order the vertices in the graph, combined with

schedulability analysis, and a priority-based scheduling

algorithm. A review of uniprocessor real-time scheduling

algorithms and schedulability analysis techniques is pre-

sented in Davis.5

The WCET can be applied to compute the WRT of the

computations for evaluating their schedulability.38 The

WRT is an essential technique to verify the behavior of

real-time systems, and simulation-based approaches have

been applied to provide WRT estimation.39 The WRT is

the worst possible response time of a computation in a

priority-driven environment. For example, if the set of

computations (C1, C2, Cn) are ready to be executed at the

same time on a single processor system, the WRT of the

computation C1 is given by the sum of its WCET and the

WCETs of the computations with priority higher than C1.

Therefore, the computation C1 is said schedulable if its

WRT is not larger than its deadline.

2.2. Scheduling of imprecise computations in real-
time systems

Depending on the features of the system environment,

real-time computations can produce different results for

the same input values. These varied results do not mean

that the execution sequences are incorrect. Likewise, in

real-time systems, computations could be interrupted on

their deadlines before completing their execution.

Interrupting the computation early does not mean that the

results are not correct; nevertheless, the results could be

imprecise.9 When imprecise results are acceptable, dis-

carding of some computations could be advantageous to

guarantee that the remaining computations meet the dead-

lines. To do so, the scheduling algorithms should be built

in order to decide which of the computations should be

executed (mandatory), and which could be discarded

(optional).40 For instance, the milestone and the sieve

approaches11 can obtain results from incomplete computa-

tions. In the milestone approach, partial results are saved

at the end of each distinct phase of the computation. Each

imprecise result saved is closer to the precise form. If the

deadline arrives, the computation is interrupted, and the

result saved in the last imprecise computation is used. In

the sieve approach, the non-critical parts or states of com-

putations are designed using the concept of sieve func-

tions. The sieves are not critical to the success of the

computation. Instead, they are useful for improving or

refining the precision of the results and can be discarded if

needed to meet the deadlines. A scheduling algorithm

needs to decide which of the parts should be executed on

the available time. Other methods include optimization

techniques41 to minimize the errors from discarding low-

criticality (or optional) tasks subject to schedulability

constraints.

Different priority-driven algorithms have been com-

bined with imprecise computation to improve their perfor-

mance under transient overloads.1 Imprecise computation

also has been applied for scheduling algorithms to improve

the performance under transient overloads. The results pre-

sented in Stavrinides and Karatza42 showed that EDF sche-

duling policies combined with imprecise computation

improve the overall system performance under heavy

workload when compared with EDF without imprecise

computation.

Heuristic algorithms based on EDF are also proposed in

Huang et al.43 for scheduling periodic tasks. The authors

show how to improve non-preemptive real-time scheduling

on a single processor by applying imprecise computation.

The first proposed algorithm can decide if each computa-

tion of a set of computations can be executed in accurate

or imprecise mode. If the algorithm guarantees that the

computation will meet its deadline, then the computation is

executed in accurate mode. Otherwise, the computation is

executed in imprecise mode. The authors presented meth-

ods to maximize the execution of computations in accurate

mode. These methods change computations from impre-

cise to the accurate mode at runtime. The second algorithm

is an online heuristic scheduler. It decides if each computa-

tion starts in accurate or imprecise mode. Online schedul-

ability tests keep checking the computations to decide if

they could be adjusted to the accuracy mode.

The advantages of EDF to deal with high workloads in

real-time systems are also demonstrated in Guo et al.44

The results showed that EDF algorithms with imprecise

4 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

computation could improve the energy efficiency for

large-scale systems by providing a strategy to enhance

QoS for real-time systems. Esmaili et al.45 proposed a

heuristic for scheduling imprecise computations using

directed acyclic task graphs to maximize the QoS under

energy-constrained computing devices. The QoS issues of

real-time applications under imprecise computation are

also addressed on the cloud systems. A scheduling heuris-

tic based on imprecise computation for real-time applica-

tions of the heterogeneous cloud is proposed in Stavrinides

and Karatza.46 This solution guarantees that the applica-

tions meet their deadlines, and it works to minimize the

global execution time. A generalized weakly hard analysis

of real-time on uniprocessor systems for limiting the num-

ber of deadline misses is proposed in Pazzaglia et al.47

Our solution is based on the principle of the EDF sche-

duling, priority-driven, and imprecise computation with

the mandatory-first approach to integrate I-DEVS with

schedulability analysis approaches. In Section 3, we intro-

duce the I-DEVS schedulability model based on the defini-

tion of WCET, and in Section 4 we present the I-DEVS

schedulability formulation based on the definition of

WRT. Section 2.3 introduces the I-DEVS main definitions.

2.3. Imprecise-DEVS

The DEVS formalism7 was defined for modeling and

simulating discrete event systems. A DEVS model is built

by compositing basic atomic and coupled models for mod-

eling real systems. Formal M&S techniques provide effi-

cient design and verification of these systems. Atomic

models can be composed by building a coupled model.

DEVS was extended in Hong et al.48 to support real-

time systems, providing the capability to simulate real-time

models. This extension, named here as Real-Time DEVS,

allows estimating the timeliness constraints while simulat-

ing the system and it opens perspectives for simulation-

driven development of real-time systems. For supporting

the simulation of timing constraints, Real-Time DEVS

defines the concept of time interval function, executable

activities, and state of an activity. For instead, if the time

interval (ti) of an activity x in a given state s is defined by

ti(s), x must be finished before the end of the ti(s). It means

that the end of the time interval is seen as the time upper

bound to execute the activity.

A new definition to extend DEVS to provide real-time

simulation capability, called RT DEVS, was proposed in

Moallemi and Wainer.49 RT DEVS assigns a deadline to

each output in the atomic component, and it verifies the

deadline when the associated output is produced. Unlike

Real-Time DEVS defined in Hong et al.,48 RT DEVS

applies minor modifications to DEVS, allowing for easy

reuse of the previous models.

The atomic component of RT DEVS is formally defined

as follows:

AMRT = \ X b, Y b, S, dext, dint, dcon, l, ta, d .

where

Xb is a bag of inputs

Yb is a bag of outputs

S: is the set of sequential states

dext: Q 3 Xb ! S, is the external state transition

function

dint: S! S, is the internal state transition function

dcon: Q 3 Xb! S, is the confluent transition function

l: S! Yb, is the output function

ta: S ! R+
0,N, is the time advance function (which

is tied to physical clock of the system); with

Q: = {(s, e)| s 2 S, 04 e 4 ta(s)} the set of total

states.

d: S! R+
0,N is the relative deadline of each state for

output production. The deadline starts at the end of the

associated state when the output function is invoked to

produce an output (i.e., considered the release time of

the output task). The deadline is allocated to each out-

put generated by the output function. Management of

the deadline is done by the time advance function.

Coupled models define the connections between basic

atomic and coupled models and are defined as following

(as in DEVS formal specifications):

CM = \ X b, Y b, D, EIC, EOC, IC .

Xb is a bag of inputs

Yb is a bag of outputs

D is an index to the component

EIC (external input couplings) connects the input

events of the coupled model itself to one or more of

the input events of its components

EOC (external output couplings) connects the output

events of the components to the output events of the

coupled model itself

IC (internal coupling) connects the output events of the

components to the input events of other components.

Building on RT DEVS, Moallemi and Wainer13 introduced

Imprecise-DEVS (I-DEVS), which combines imprecise

computation with DEVS and opened new perspectives

Mello and Wainer 5

toward combining real-time modeling methods with mod-

eling and simulation environments.

Imprecise DEVS (I-DEVS) uses RT DEVS definition

and adds a mandatory or optional condition for each state,

as follows:

AM = \ X b, Y b, S, dext, dint, dconf , l, ta, d .

where

Xb, Yb, dext, dint, dconf, l, ta, and d are the same as in

RT DEVS,

S: {(s, c)| s2Z+
0 and c 2 {mandatory| optional}}.

The states of the atomic model are categorized as manda-

tory and optional. A mandatory state will have a manda-

tory output function (represented as an output task), and

an optional state will produce an optional output task.

Although the I-DEVS definitions can be used to study sys-

tems with enough to manage the mandatory and optional

computations, schedulability analysis requires a known set

of computations at each given time. For each computation,

it is essential to know the execution time, the release time,

the deadline, and if the computation is mandatory or

optional.50

3. I-DEVS scheduling and the
schedulability model

This section introduces the assumptions considered for

scheduling and schedulability analysis of real-time compu-

tations. The idea is to improve the predictability and feasi-

bility of I-DEVS scheduling.

In our definitions, a real-time computation Ci is defined

by Ci = \ ri, ci, wi, d(si) . where:

ri is the release time

ci2 {mandatory, optional}

wi is the worst-case execution time

d(si) is the relative deadline.

Then, a set of computations K is defined by K = {C1, C2,

..., Cn}.

The variable wi denotes the WCET of the computation

Ci and it provides information about the worst possible

execution time of Ci before running it. Using the WCET

allows the scheduling algorithm to ensure that no real-time

constraint is missed by assuming that every computation

always runs according to its WCET.51 We assume that the

wi of each computation is specified correctly by the sys-

tems engineers at the project requirements phase.

According to the I-DEVS definition,13 the computation

release time (ri) of an input to the model is equal to the

arrival time. According to the formal semantics of DEVS

atomic models, the computation release time of the output

(l) and internal transition computation (I) functions are

considered to execute together (lI). When this happens,

the state s2S might change. The execution of these func-

tions is triggered by the time advance function ta(s). As

each computation Ci is performed on a state s where s2S,

and S = {s, c}, and c2 (mandatory, optional), each com-

putation can be mandatory or optional according to its cur-

rent state s.

The relative deadline is specified by d(s), as seen in the

I-DEVS atomic model definition. The relative deadline

defines the time between the beginning of the state S and

the time limit to complete the lI computation. A single

computation Ci is said schedulable if its relative deadline

d(si) is equal to or greater than the time advance plus the

computation time of the lI, which is defined by wi. Then,

ta(s) + wi 4 d(si).

If lI is not schedulable and it is defined as optional,

then the output (l) could be discarded. The internal transi-

tion computation (I) is not discarded as we need to perform

an internal transition function to the next state. For multi-

ple consecutive optional lI computations, only the I com-

ponent of the last computation is required to perform the

internal transition. Discarding the optional computations

can save time to execute the mandatory computations.

In our proposed method, the scheduling of the manda-

tory and optional computations is based on the EDF algo-

rithm. We consider a single processor system. The priority

of each computation is defined according to its relative

deadline d(si). The computations with earliest deadlines

have higher priority, and the mandatory computations

receive a higher priority than the optional computations

independently of their d(si). The system is considered to

fail when one or more mandatory computations are not

schedulable. The scheduling algorithm assigns priorities

dynamically to Ci2K, where K = (C1, C2, ..., Cn), as

follows:

If Ci ^ Cj 2 K

then

if ci = mandatory and cj = optional

Ci is higher priority than Cj // even if d(si) . d(sj)

else if ci,j = mandatory and d(si) \ d(sj) then

Ci is higher priority than Cj

else if ci,j = optional and d(si) \ d(sj) then

Ci is higher priority than Cj.

The EDF scheduler assigns priorities at runtime whenever

there are new arrivals of new computations at a given

time. We assume sporadic time arrivals of computations,

which are like the aperiodic arrivals,27 but with a mini-

mum inter-arrival time denoted by Ti. If the arrival time of

a computation Ci is ri, then the next computation arrives

on or after ri + Ti, and d(si)� ri 4 Ti. As we can study

schedulability considering that the minimum inter-arrival

6 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

time can be used to define the period Pi of a computation

Ci, we assume that Pi = Ti.

As discussed in Nasri et al.,52 schedulability analysis

for systems with non-deterministic arrival times is decid-

able for non-preemptive schedulers, and it could be unde-

cidable for systems with preemptive schedulers. Moreover,

preemption could increase memory requirements, reducing

the number of feasible schedules.31,51 Therefore, we

decided to use a non-preemptive scheduler (extensions for

preemptive schedulers will be studied in future work).

4. I-DEVS schedulability formulation

The schedulability model defined in the previous section

was used to specify a schedulability analysis method for I-

DEVS based on the WRT of the computations. The WRT

allows verifying if each computation which belongs to a

known set of computations (ready to be executed) is sche-

dulable or not by performing the schedulability testing.

This section presents a definition of a set of computa-

tions, a method for determining the WRT of each compu-

tation and how it works with the relative deadline for

schedulability analysis. Following, we present a technique

to implement a schedulability test according to the EDF

scheduling algorithm. Finally, we present an adaptation of

the DEVS execution algorithms to manage the set of com-

putations and to execute the schedulability tests on the

coupled models, as well as discussing a method to flatten

of DEVS hierarchical structure.

4.1. The set of computations and schedulability
analysis specification

The I-DEVS basic components are modeled hierarchically.

However, as each component knows only its own compu-

tations, the hierarchical structure needs to be flattened.

Flattening of the model hierarchy53,54 is a method that

transforms the hierarchical structure of a coupled model to

a flat structure of depth one. Therefore, all computations

are managed by the topmost coupled component. Then, if

Mi is an I-DEVS atomic component and the set of compo-

nents is defined as {Mi| I2D} where each i in D is a com-

ponent, then K is the set of computations Ci of all i in D

where K = {C1, C2, ..., Cn}. And Ci is the computation of

the component Mi at a given time. All the arrived compu-

tations at a given time define the set K.

The schedulability analysis1,27 is performed for all the

computations i of the set K before releasing them to be

executed. We need a known set K to evaluate schedulabil-

ity. If there is a set K of computations at a given time,

then:

C1, C2, ..., Cn2K

{(s, e, d(s))| s2S,0 4 e4 ta(s) where d(s) ø ta(s)}

for each Ci2K, Ci is schedulable if:

wi +
XKj j

Cj= 12 hp Cið Þð Þ
wj + ei 4 d sið Þ ð1Þ

where

Ci^Cj2K

ei is the elapsed time of the si

wi and wj are the WCET of the computations Ci and Cj,

respectively

hp(Ci) is all Cj computations of K with higher priority

(hp) than Ci

d(si) is the relative deadline of Ci from the beginning

of the state si.

Equation (1)1 verifies if the WRT38 of each computation

Ci plus its elapsed time is no larger than its deadline. The

WRT of a Ci is defined by the sum of the wj of all Cj with

higher priority (hp) than Ci plus the wi. For each Ci2K, if

WRT(Ci) + ei 4 d(si), then Ci is assumed schedulable.

Otherwise, if WRT(Ci) + ei . d(si), then Ci is assumed

not schedulable. If ci = optional, then it is discarded, and

the results are considered imprecise. Mandatory computa-

tions are always performed.

As the results of the schedulability tests are assumed to

be feasible, all such schedulable computations will meet

their deadline. The schedulability analysis of each Ci2K is

accomplished by their WRT that include the WCET of all

computations with priority higher than Ci.

4.2. Schedulability testing formulation

If the utilization factor U of a set K of computations is

equal to or less than 1 (U 4 1, where 1 is the maximum

capacity of a CPU), then the set K is schedulable by EDF.

The Utilization Factor represents the fraction of CPU time

used by the computation and it is defined by the following

equation:22

Ui =
wi

Pi

ð2Þ

where

wi is the WCET of the computation i and

Pi is the period.

The minimum interval Ti between the arrivals of a sporadic

computation i15 is used as the period Pi for schedulability

test. The sporadic computations behave like periodic com-

putations with period T and deadline d(s), and the mini-

mum interval can be settled to be equal to the relative

deadline.27

Mello and Wainer 7

Therefore, we assumed Ti = d(si) and Pi = Ti. As the

relative deadline is defined according to the time of the last

transition and it can change for distinct Ci2K, the elapsed

time e cannot be considered as part of the period to analyze

the schedulability. Then, the minimum interval of all Ci2K

is given by the following equation:

Pi = d sið Þ � ei ð3Þ

The largest minimum interval (Pi) between the arrivals

among all the computations of the set K of computations at

a given current time is settled as the current Pi for perform-

ing the schedulability tests of the set K of computations.

Equation (3) shows how Pi is calculated. Therefore, for all

Ci2K, let Pj = fmaxi ½Pi�jPi = d(si)� eig. The largest

minimum interval is adopted to avoid a pessimistic estima-

tion52 on the schedulability tests without losing feasibility.

Therefore, by calculating the utilization factor

(Equation (2)) based on wi and Pi, a set K of computations

could be considered schedulable if U 4 1 for all

Ui(Ci2K) according to the equation:

Xn

i= 1

Ui 4 1 ð4Þ

However, the utilization factor is seen as a non-exact

test to verify whether the set K is entirely schedulable or

not. If the schedulability test is negative, K is not entirely

schedulable. If the schedulability test is non-negative, it

does not guarantee that all Ci 2 K are schedulable.

Moreover, it does not help the scheduler to identify which

of the optional computations could be discarded in case of

transient overloads.

Different to the utilization factor, the WRT analysis

presented by Liu1 allows the evaluation of the exact sche-

dulability of computations for EDF. Given a set K of com-

putations, it permits to verify if each Ci2K is schedulable

or not. In addition, it permits to identify the optional com-

putations that could be discarded to save time for the man-

datory computations. This test is based on the following

equations:

Rm
Ci
=wi ð5Þ

Assuming the set K of computations with one computa-

tion Ci, and the worst-case execution time of Ci is defined

by wi, the WRT R of Ci (R
m
Ci

where m= 0) is equal to the

wi from its release time given by ri.

Equation (5) is applied to the schedulability test where

the set K has one computation. When the set K has more

than one computation, Equation (5) is applied to the first

iteration for calculating R and m starts at 0:

Rm+ 1
Ci

=wi +
X

j2hp(Ci)

Rm

Pj

:wj ð6Þ

where

R is the interval between ri and the end of the execu-

tion of the Ci (WRT)

P is the period

w is the WCET.

Assuming the set K =(Ci, Ci+ n) where n . 0, and the

worst-case execution time of (Ci, Ci+ n) is defined by

(wi,wi+ n), the WRT RCi
of each Ci 2 K is equal to the wi

plus the worst-case execution time of all computations

with higher priority than Ci, represented by wj in Equation

(6), into the K.

Equation (6) is applied after Equation (5) iteratively

until Rm
Ci
=Rm+ 1

Ci
to reach the WRT of each computation

Ci into the K. Each iteration is identified by m. The result

is the maximum (or worst) response time (RCi
) of the com-

putation Ci. Equations (5) and (6) for calculating the WRT

of real-time computations are demonstrated in Liu1 and

Burns and Wellings.27

According to the I-DEVS definition introduced in sec-

tion 2.3, d(si) is the relative deadline of Ci from the

beginning of the state si, and S : f(s, c) jsZ+
0

and c fmandatory j optionalgg. As the RCi
is calculated

from the release time of Ci, defined by ri, then the elapsed

time (ei) from the initial of the state si until ri is applied

on the schedulability test and Ci is assumed schedulable

only if the condition of Equation (7) is satisfied:

RCi
+ ei 4 d sið Þ ð7Þ

Following the assigning priority method introduced in

section 3, the mandatory computations always have higher

priority than optional computations, independent of their

deadlines. If the condition of Equation (7) is false for one

or more Ci, where ci =mandatory, then the scheduling of

K =(Ci, Ci+ n) is not viable. Optional computations are

discarded only when the condition defined on Equation (7)

is false.

4.3. Extending the I-DEVS coordinator algorithms

This section describes the algorithms, which are associated

with the coupled models that integrate the functionalities

for schedulability analysis. We extended the I-DEVS algo-

rithms (which are based on RTDEVS and P-DEVS55) to

perform the schedulability testing procedures. Execution

processes (Engines) associated with atomic models were

also adapted.

The coordinator algorithms manage the messages

exchange among Engines. A simulation starts, as defined

on I-DEVS, by sending an initialization message to all

Engines.

Whenever there is an external input, instead of routing

it through an external message (X) to the destination

8 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

Engine, as happen in the I-DEVS algorithms, we cache it

in the set K of computations (called SyncSet into the algo-

rithms). The coordinator performs the schedulability test-

ing over the SyncSet and the optional computations that

will not meet their deadlines are discarded from the

SyncSet.

Whenever there is an internal event (lI), instead of

sending collect (@) and internal (�) messages to the target

Engine, we cache the attributes (as defined in Section 3) of

the computation associated with this event in the SyncSet

in order to perform the schedulability testing. If this com-

putation will meet the deadline, then @ and � messages

are sent to the respective Engine. Otherwise, only the �
message is sent to execute dint. When the @ message is

canceled, the coordinator does not expect to receive done

message. Whenever a sequence of optional computations

of an atomic model is discarded, only the � message of the

last event must be sent to the Engine to execute the dint.

This strategy will reduce the number of messages between

the coordinator and the Engine and the number of dint

executions. In this way, the Engine is no longer responsi-

ble for controlling the imprecise computation issues.

ALGORITHM 1 shows the modified version of the

Engine. The original I-DEVS Engine functions control the

imprecise computation by including the following condi-

tion:13 if (state is optional AND ta(s) \ now OR d(s) \
now). This condition is true when an optional computation

is to be serviced later than its release time (given by ta(s)

in the original algorithm) or when the computation does

not meet the deadline. Hence, whenever this condition is

true, its output will be discarded. This condition was

removed from our modified version because the schedul-

ability testing is performed by the topmost coordinator and

only the schedulable computations are sent to the Engine.

Hence, the functions for controlling the imprecise compu-

tation are not needed in the Engine.

ALGORITHM 2 illustrates the topmost coordinator

algorithm when it receives a � message where tL is the time

of the last transition, tN is the time of the next transition,

and tL 4 t 4 tN. If the coordinator receives an internal

message � to be sent to an Engine and there are inputs q 2
Bag, instead of sending them immediately to the child, the

j(q,t) are cached into the SyncSet. Following, the schedul-

ability test is performed over each one of the computations

cached in the SyncSet. The tested computations Ci that will

meet their deadlines (according to the schedulability test)

are sent to the children. Otherwise, they are discarded from

the SyncSet. The sent messages are followed by the inter-

nal message �.
Mandatory computations are always sent to the chil-

dren. When an Engine does not receive the message due

to the discarding; time is saved for mandatory computa-

tions. The atomic model executes dint in response to a �

ALGORITHM 1: Modified Engine algorithm

Receive X msg (s, e, x)
push x in the Qext

end external
Receive * msg (s)

if (internal event)
Run δint function
if (external input in Qext)

Run δext function
elseif (both external and internal events)

Run δcon function
endif

endif
send done msg

end internal
Receive @ msg (s)

Run λ function
Send y msg
Send done msg

end collect

ALGORITHM 2: Coordinator algorithm: internal message

while t 6¼∞
if tL ≤ t ≤ tN

for all q ∈ bag
for all receivers of q, j ∈ Iself

q : = zself , j (q)
cache j(q, t) in the SyncSet

endfor
endfor
for all j(q, t) in SyncSet

if sj is optional and j(q, t) is schedulable
send (q, t) to j

else
discard j(q, t) of the SyncSet

send (* , t) to j // state transition
endif
if sj is mandatory

send (q, t) to j
endif
empty bag
for all i in the SyncSet
send (* , t) to I
endfor
wait until all (done, tN)’s are received
tL : = t
tN : =minimum of components’tN’s
clear the SyncSet

else raise an error
endif

end while

Mello and Wainer 9

message and returns its next internal event time by a done

message.

Similar changes were made in the coordinator algo-

rithms when receiving a collect (@) and output y messages

from the children. As illustrated in ALGORITHM 3,

whenever the coordinator receives a @ message to be sent

to the child i, i(@) is also cached into the SyncSet.

Afterward, the coordinator applies the schedulability test

to verify if the computations of i(@) at the time t for all

child i2SyncSet will meet the deadline. If discarded, the

@ message is not sent to the Engine. If the @ message is

sent to the target Engine, the Engine responds to the @

message by executing the l function and returning the out-

put value through an output (y) message.

When the coordinator receives an output message y

from child i to be sent to the child j, as illustrated in

ALGORITHM 4, the coordinator translates the Output

Message y into the External Message q at first, and then

caches j(q,t) into the SyncSet.

Before sending it to all its receiving Engines, the coor-

dinator verifies if the state of the j is optional and if j(q,t)

is schedulable among all j2SyncSet. If j is schedulable then

j(q,t) is sent to its receiving Engine. If not schedulable, the

coordinator discards j(q,t) from SyncSet and the message q

will not be sent to its child.

The messages to trigger mandatory computations are

always sent to the Engines by all the coordinators. As the

schedulability tests and scheduling are performed by the

coordinator, the Engines were not changed.

4.4. DEVS hierarchy

The set K of computations must include all computations

Ci of the model at a given time to execute the schedulabil-

ity test. However, as each coordinator manages the compu-

tations of its own Engines only, the hierarchical structure

must be flattened to keep all computations in one single

set K. The Flattened coordinator strategy53,54 transforms a

hierarchical structure of a coupled model into a flat struc-

ture with depth one by eliminating intermediate coordina-

tors. In addition, the direct messaging communications

between the Flattened coordinator and the Engines reduce

overhead and improve stability. The transformation must

preserve the original port linkage relationship among

atomic models. The SyncSet structure in the coordinator

algorithm implements the definition of the set K of

computations.

Therefore, the schedulability algorithms are performed

based on the SyncSet at the topmost coordinator. There are

different algorithms to transform the hierarchical structure

of the model into a flattened structure by eliminating coor-

dinators and transforming the hierarchical coupled model

into a coupled model of depth one.

Figure 1 illustrates the model transformation from a

hierarchical structure to a flattened structure with depth

one. It shows a simple graph to identify the multiply

SyncSet due to the hierarchical structure and a single

SyncSet after flattening. The structure illustrated in Figure

1(a) does not permit to perform the schedulability tests for

the entire model. After flattening the coordinator’s struc-

tures, as shown in Figure 1(b), there is one unique SyncSet

and the schedulability tests and scheduling can be

performed.

ALGORITHM 3: Coordinator algorithm: collect message

while t 6¼∞
if t= tN then

tL := t
for all imminent child processors i with
minimum tN

cache i in the SyncSet
endfor
for all i in SyncSet
if si is optional and i(λ,t) is schedulable on
SyncSet based on the WRT(i(λ,t))

send (@,t) to child i
else

discard i from the SyncSet
endif
if si is mandatory

send (@,t) to i
endif
endfor
wait until (done, t)’s have been received from
all imminent processors

else raise error
endif

end while

ALGORITHM 4: Coordinator algorithm: output message

when a (y, t) message is received from child i
for all influences, j of child i

q : = zi,j (y)
cache j(q, t) in the SyncSet

endfor
for all j(q,t) in SyncSet

if sj is optional and j(q, t) is schedulable on SyncSet
based on the WRT(j(q,t))

send (q, t) to j
else

discard j(q, t) from the SyncSet
endif
if sj is mandatory

send (q, t) to j
endif

endfor
endwhen

10 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

5. Schedulability test scenario and results

This section shows scenarios of schedulability testing

based on an I-DEVS model including three atomic models.

This I-DEVS model definition is presented in Moallemi

and Wainer,13 and its original hierarchical structure was

flattened. The scenarios explore four schedulability situa-

tions where each testing step is discussed in detail. The

three atomic models A, B, and C are coupled into the top-

most coordinator. Figure 2 shows the I-DEVS graph of

each atomic model.

Figure 2(a) shows a flattened I-DEVS model where

three atomic models are coupled into the Top model. The

atomic models A, B, and C are connected by input/output

ports. Figure 2(b)–(d) shows a graphic representation of

the atomic models. The continuous lines indicate external

transitions and dashed lines indicate internal transitions.

The graphs show the state identification, the time advance,

the relative deadline, and if the state is mandatory or

optional for each state of each atomic model. For instance,

the state A2 of the atomic model A (Figure 2(b)) is manda-

tory (M), its ta(s) = 1t and its d(s) = 4t. Therefore, the

release time of the state A2 (rA2) is given by ta(A2), hence

rA2 = 1, and the output y2a must be produced until the

deadline of the state A2 (d(sA2) = 4). The flattened model

(Figure 2(a)) works as follows: it is initially in state A1

(ta(A1) = inf) until an input xa is received on port InA

when the external transition changes the states to A2.

After 1t it produces the output y2a and transitions to A3.

Similar behavior can be seen in the other states of A and

in the states of B and C.

Figure 3 shows an analytical specification for the

atomic models A, B, and C according to the diagrams

shown in Figure 2. Each box specifies the ports, states,

transitions, release time, and the relative deadline for each

state. These specifications are used to represent the beha-

vior of the schedulability testing scenario presented in this

section. The following figures represent the computations

by X (input), l (output), and I (internal transition computa-

tion). Boxes with gray background represent executed

computations. The first line shows the current time t. The

release time and the deadline of the computations are rep-

resented by rn and dn, respectively.

Figure 4 shows a scenario where computations of the

atomic models A, B, and C are performed. First, an input

X enters the system at time zero of the model A. Assuming

the X takes 1t at time 1, the atomic model A moves from

the initial state A1 to A2. As rA2 = 1 (given by the ta(A2)

in Figure 3), the computation CA2 (A(l2I2)) (Figure 4) is

executed at time 2 producing the output y2a (illustrated in

Figure 2(b)) and the internal transition from the state A2 to

A3. The output y2a is translated to an input for B (Figure

2), and the computation X on B is performed after A(l2I2)

causing the internal transition on B from B1 to B2. The

next steps to execute the computations are defined on the

configuration presented in Figures 2 and 3. From now on,

a computation A(lnIn) will be named as CAn and X will be

named as CX.

The schedulability test is performed whenever a new

computation is ready to be executed. If there are multiple

computations ready to be executed at the current time t,

they all belong to the set K for testing purposes.

Figure 4 demonstrates a scenario where the release time

of the computation CA2 is given by rA2 = 1 from the end of

the computation CX, and only CA2 is in the set K = {CA2}.

Considering that the current time t is 1:

If K = {CA2} and:

rA2 = 1 (from the initial of the state on time 1)

cA2 = mandatory

wA2 = 2

d(sA2) = 4

eA2 = 1 (the elapsed time from the last transition of the atomic

model A is 1)

The release time of CA2 is 1 (rA2 = 1), CA2 is manda-

tory, the WCET of CA2 is 2 (wA2 = 2), its relative deadline

(d(sA2)) is 4, and the elapsed time from the last transition

of the atomic model A is 1 (eA2 = 1). Because the set of

computations K has one computation at time 1 (Figure 4),

only Equation (5) is applied.

Then, applying Equation (5) to the computation CA2:

R0
A2 = wA2

R0
A2 = 2

After calculating the worst execution time where

R0
A2 = 2, and considering that rA2 = 1, and d(sA2)= 4,

then by applying Equation (7) where R0
A2 + eA2 4 d(sA2),

the result 2+ 14 4 is true, and CA2 is schedulable.

Note that only Equation (5) was applied because the set

K of computations has only the computation A2 at time

t = 1, and the WRT of the computation A2 (R0
A2= 2) is

equal to its WCET (wA2 = 2).

Figure 1. From a hierarchical structure to a flattened structure
with depth one: (a) SyncSet in a hierarchical structure and (b)
SyncSet in a flattened structure.

Mello and Wainer 11

Figure 4 also shows an overload scenario where the

computations CB3 and CC3 are in the set of computations

K. Considering that the current time t is 15:

If K = {CB3, CC3} and:

rB3 = 7 (from time 8) ^rC3 = 2 (from time 13)

cB3 = optional ^cC3 = optional

wB3 = 2 ^wC3 = 2

d(sB3) = 11 ^d(sC3) = 5

eB3 = 7 ^eC3 = 2

Both computations are optional. The deadline of CB3 is

at time 19 (as shown in Figure 4), and it is given by its

relative deadline (d(sB3) = 11) from the end of the last

transition at time 8. The deadline of CC3 is at time 18, and

it is given by its relative deadline (d(sC3) = 5) from the

end of the last transition at time 13. Because the deadline

of CC3 is earlier than the deadline of CB3, the computation

CC3 is higher priority than CB3. Therefore, CC3 executes

first.

Then, applying Equation (5) to the computation CC3:

R0
C3 = wC3

R0
C3 = 2

Applying Equation (7), 2+ 24 5 is true, and CC3 is

schedulable.

Because CC3 is higher priority than CB3 (C32hp(B3)),

CB3 executes after CC3. The WCET of CC3 (wC3 = 2) is

considered to analyze the schedulability of CB3 by apply-

ing Equation (5) at first and following Equation (6)

Figure 2. DEVS graph of the atomic models: (a) DEVS flattened model, (b) atomic model A, (c) atomic model B, and (d) atomic
model C.

Source: Moallemi and Wainer.13

Figure 3. Configuration of the atomic models A, B, and C.

Figure 4. Schedulability test scenario: K = {CB3, CC3}.

12 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

iteratively until Rm
Ci
=Rm+ 1

Ci
, where PC3 is given by d(sB3)

2eB3 according to Equation (3).

Applying Equations (5) and (6) to the computation CB3

with K = {CB3, CC3}:

R0
B3 =wB3 = 2

R1
B3 =wB3 +

X

C32hp(B3)

R0

PC3

:wC3 = 2+
2

4
:2= 4

R2
B3 =wB3 +

X

C32hp(B3)

R1

PC3

:wC3 = 2+
4

4
:2= 4

As R1
B3 =R2

B3 at the second iteration, and applying

Equation (7), 4+ 74 11 is true, and CB3 is also

schedulable.

Figure 5 shows that after the end of the execution of

CC3, the computation CB3 can be executed before its dead-

line at time 19. As d(sC3) is earlier than d(sB3), CC3 is

higher priority than CB3 (according to the EDF scheduling

algorithm). Therefore, wB3 is not considered to assess the

schedulability of CC3 (only Equation (5) is applied).

Otherwise, the wC3 must be considered to evaluate the

schedulability of CB3 and Equations (5) and (6) must be

applied. In this test, CB3 also is schedulable because it will

meet its deadline even if executed after CC3. This scenario

can be seen in Figure 5 where the current time t = 17.

Figure 6 shows a new computation CA4 ready to be exe-

cuted before executing CB3. As rA4 = 6 from the initial of

the state A4 (configuration in Figure 3), the execution time

of the computation CA4 is settled to time t = 17. Therefore,

the set K is defined by K = {CB3, CA4} at t = 17 for evalu-

ating the schedulability.

Figure 6 also shows another overload scenario where

the computations CB3 and CA4 are in the set of computa-

tions K. Considering that the current time t is 17:

If K = {CB3, CA4} and:

rB3 = 7 (from time 8) ^rA4 = 6 (from time 11)

cB3 = optional ^cA4 = mandatory

wB3 = 2 ^wA4 = 2

d(sB3) = 11 ^d(sA4) = 9

eB3 = 9 ^eA4 = 6

The deadline of CB3 is at time 19 (as shown in Figure

6), and it is given by its relative deadline (d(sB3) = 11)

from the end of the last transition at time 8. The deadline

of CA4 is at time 20, and it is given by its relative deadline

(d(sC3) = 9) from the end of the last transition at time 11.

However, CA4 is higher priority than CB3 because

cA4 = mandatory and cB3 = optional even if the deadline

of CB3 is earlier than the deadline of CA4. Therefore,

according to the schedulability model presented in section

3, CA4 executes first.

Then, applying Equation (5) to the computation CC3:

R0
A4 = wA4

R0
A4 = 2

Applying Equation (7), 2+ 64 9 is true, and CA4 is

schedulable.

Because CA4 is higher priority than CB3 (A42hp(B3)),

CB3 executes after CA4. The WCET of CA4 (wA4 = 2) is

considered to analyze the schedulability of CB3 by apply-

ing Equation (5) at first and following Equation (6) itera-

tively until Rm
i =Rm+ 1

i .

Applying Equations (5) and (6) to the computation CB3

as following:

R0
B3 =wB3 = 2

R1
B3 =wB3 +

X

A42hp(B3)

R0

PA4

:wA4 = 2+
2

3
:2= 4

R2
B3 =wB3 +

X

A42hp(B3)

R1

PA4

:wA4 = 2+
4

3
:2= 6

R3
B3 =wB3 +

X

A42hp(B3)

R1

PA4

:wA4 = 2+
6

3
:2= 6

As R2
B3 =R3

B3 at the third iteration, and applying

Equation (7), 6+ 94 11 is false, and CB3 is not schedul-

able. Figure 7 shows that after the end of the execution of

CA4, the computation CB3 cannot be executed before its

deadline at time 19.

As CA4 is mandatory and CB3 is optional, CA4 is higher

priority than CB3. Therefore, wB3 is not considered to

Figure 5. Schedulability test scenario: K = {CB3}.

Mello and Wainer 13

assess the schedulability of CA4 (only Equation (5) is

applied). Otherwise, the wA4 must be considered to assess

the schedulability of CB3 and Equations (5) and (6) must

be applied. In this test, CB3 is not schedulable because it

will not meet its deadline, and it is discarded. This sce-

nario can be seen in Figure 7 at the current time t = 19.

Even if CA4 is mandatory, the schedulability test must be

executed because the set K could have another mandatory

computation.

In summary, we showed how the proposed methods

allow the analysis of overloading conditions under I-

DEVS formalism, which integrate imprecise computations

of real-time systems and DEVS, by schedulability testing

on designing phases.

6. Discussion and perspectives

The research results presented above show how to inte-

grate DEVS formal models, imprecise computing, simula-

tion, and schedulability analysis to define and study real-

time systems models including cases of transient overload-

ing conditions in the designing phases. Using this solution,

the designer configures the atomic models of a real-time

systems using I-DEVS atomic models and coupling them

to build complex applications. Then, the different DEVS

functions are converted into transitions, ri, ci, wi, and d(si)

for each computation, as illustrated in Figures 2 and 3.

Then, we can apply the proposed schedulability test (based

on WCET and WRT methods), to evaluate the feasibility

of the timeline for the RT system. Our approach allows the

designer to keep attention on the modeling aspects, using

simulation and schedulability analysis prior implementa-

tion, and considering IC model development. The pro-

posed methods guarantee the timeliness requirements by

applying schedulability tests over mandatory and optional

computations.

I-DEVS would discard optional computations whenever

it is to be serviced later than its release time. For instance,

in Figure 4, A(l3I3) was serviced at time t= 9 while its

release time is at time t = 8 (rA3) and this computation

would be discarded even if there is no overload. On the

contrary, introducing schedulability tests allows analyzing

the timing constraints at runtime. In Figure 4, the compu-

tation A(l3I3) is considered feasible to be scheduled even

if it is to be serviced later than its release time.

Consequently, the number of executed optional computa-

tions can be increased.

The scenarios in section 5 show how our solution ana-

lyzes the schedulability of real-time constraints under dif-

ferent overloading conditions. Our solution is based on

WRT classical methods that were integrated with I-DEVS.

The WRT methods were demonstrated in Liu1 and in

Burns and Wellings.27 The effectiveness of I-DEVS by

combining imprecise computation technique and DEVS is

demonstrated in Moallemi and Wainer.13 The principles of

imprecise computation are introduced in Liu et al.9 In this

work, we demonstrate the feasibility and effectiveness of

our solution where a modeling and simulation formalism

(I-DEVS) allows analyzing the schedulability of real-time

constraints of RTS under overload conditions by simula-

tion and the mapping of models into a real-time task

model. Exhaustive experiments for comparing the

Figure 6. Schedulability test scenario: K = {CB3, CA4}.

Figure 7. Schedulability test scenario illustrating the execution of CA4.

14 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

performance and optional computations discarding mea-

sures of the previous and current approaches are needed in

the future.

The error of the optional computation is calculated

as the distance between the imprecise result, when the

optional computations are executed partially, and the

precise result, when the optional computations are exe-

cuted completely. The maximum error happens when

all the optional computations are discarded.18 To mini-

mize the total error, the scheduler and schedulability

test can consider the weight of each computation. The

weight is a positive number for measuring the relative

importance of the computation to the result where, if zi

is the weight of the computation i, then 0ø zi 4 1 andPn
i= 1 zi = 1. Given a schedule of a computation set K

where ei is the error of each computation i and zi is the

weight of each computation i, the maximum error

(maxi½zi, ei�) or average error can be minimized by

scheduling the subset of K with the smallest maximum

or average error.

7. Conclusion

We presented an approach to integrate schedulability anal-

ysis strategy with I-DEVS to improve the predictability

and the feasibility for scheduling ICs. The approach is

based on the EDF algorithm combined with the

mandatory-first approach and schedulability test is based

on the WRT to verify whether each computation is sche-

dulable or not according to their timing constraints. This

feature makes possible, for instance, to analyze whether

the model can be executed on a specific hardware plat-

form. To integrate this strategy into the I-DEVS, we pro-

posed a method based on the SyncSet on the coordinator

level as the main resource to implement the schedulability

tests and the scheduling before triggering the computations

on the Engines.

As future work, we plan to study new scheduling and

schedulability analysis methods to manage new features.

The main interests include the integration of sharing

resources in the system models, and the scheduling and

schedulability analysis process could implement mutual

exclusion functionalities to avoid deadlock situations.

Moreover, in our approach, the priority inversion and the

weight of the computations are not being considered. The

discarding of optional computations unnecessarily can be

avoided by managing the priority inversion situations. The

weight of the optional computations is useful to improve

the accuracy of the results. Analysis considering the defi-

nition of error measures of the optional computations will

also be considered in the future.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article:

This research was supported by Federal University of Fronteira

Sul and the Brazilian research agency CAPES, process No. 1835-

14-9. It was partially funded by NSERC.

ORCID iDs

Braulio A Mello https://orcid.org/0000-0003-3430-809X

Gabriel A Wainer https://orcid.org/0000-0003-3366-9184

References

1. Liu J. Real-time systems. 1st ed. London: Pearson, 2000.

2. Felder M and Pezzè M. A formal design notation for real-

time systems. ACM T Softw Eng Meth 2002; 11: 149–190.

3. Haur I, Béchennec J and Roux O. Formal schedulability

analysis based on multi-core RTOS model. In: 29th interna-

tional conference on real-time networks and systems, Nantes,

7–9 April 2021, pp. 216–225. Nantes: Association for

Computing Machinery.

4. Davis R and Burns A. A survey of hard real-time scheduling

for multiprocessor systems. ACM Comput Surv 2011; 43: 1–

44.

5. Davis R. A review of fixed priority and EDF scheduling for

hard real-time uniprocessor systems. ACM SIGBED Rev

2014; 11: 8–19.

6. Moallemi M and Wainer G. Designing an interface for real-

time and embedded DEVS. In: Spring simulation multicon-

ference (SpringSim ’10), Orlando, FL, 11–15 April 2010, pp.

1–8. San Diego, CA: Society for Computer Simulation

International.

7. Zeigler B. Multifacetted modelling and discrete event simu-

lation. 1st ed. London; Orlando, FL: Academic Press

Professional, 1984.

8. Zeigler B, Praehofer H and Kim T. Theory of modeling and

simulation: integrating discrete event and continuous com-

plex dynamic systems. 2nd ed. San Diego, CA: Academic

Press, 2000.

9. Liu J, Shih W, Lin K, et al. Imprecise computations. P IEEE

1994; 82: 83–94.

10. Ramanathan P. Graceful degradation in real-time control

applications using (m, k)-firm guarantee. In: IEEE 27th inter-

national symposium on fault tolerant computing, Seattle,

WA, 24–27 June 1997, pp. 132–141. New York: IEEE.

11. Lin K, Natarajan S and Liu J. Imprecise results: utilizing par-

tial computations in real-time systems. In: IEEE 8th real-

time systems symposium, San Jose, CA, 1–3 December 1987,

pp. 210–217. New York: IEEE.

12. Liu J, Lin K, Shih W, et al. Algorithms for scheduling impre-

cise computations. Computer 1991; 24: 58–68.

13. Moallemi M and Wainer G. I-DEVS: imprecise real-time

and embedded DEVS modeling. In: Symposium on theory of

modeling & simulation: DEVS integrative M&S symposium,

Boston, MA, 3–7 April 2011, pp. 95–102. Boston, MA: The

Society for Modeling and Simulation International.

Mello and Wainer 15

14. Wainer G and Moallemi M. Designing real-time systems

using imprecise discrete-event system specifications. Softw:

Pract Exper 2020; 50: 1327–1344.

15. Zhang F and Burns A. Schedulability analysis for real-time

systems with EDF scheduling. IEEE T Comput 2009; 58:

1250–1258.

16. Buttazzo G. Hard real-time computing systems: predictable

scheduling algorithms and applications. 3rd ed. Boston, MA:

Springer Publishing Company, 2011.

17. Ripoll I, Crespo A and Mok A. Improvement in feasibility

testing for real-time tasks. Real-Time Syst 1996; 11: 19–39.

18. Wilhelm R, Engblom J, Ermedahl A, et al. The worst—case

execution—time problem—overview of methods and survey

of tools. ACM T Embed Comput S 2008; 7: 1–53.

19. Alshareef A and Sarjoughian H. Simulation, model check-

ing, and execution of activity models. arXiv:2105.11851v1

[cs.SE], 2021, https://arxiv.org/abs/2105.11851

20. Fersman E, Pettersson P and YI W. Timed automata with

asynchronous processes: schedulability and decidability. In:

International conference on tools and algorithms for the

construction and analysis of systems, Grenoble, 8–12 April

2002, pp. 67–82. Berlin: Springer.

21. Saadawi H and Wainer G. Principles of DEVS models verifi-

cation. Simul: T Soc Mod Sim 2013; 89: 41–67.

22. Liu C and Layland J. Scheduling algorithms for multipro-

gramming in a hard-real-time environment. J ACM 1973; 20:

46–61.

23. Kuo T, Chang L, Liu Y, et al. Efficient online schedulability

tests for real-time systems. IEEE T Software Eng 2003; 29:

734–751.

24. Zhang F and Burns A. Schedulability analysis of EDF-sched-

uled embedded real-time systems with resource sharing.

ACM T Embed Comput S 2013; 12: 1–19.

25. Lee H and Choi J. Constraint solving approach to schedul-

ability analysis in real-time systems. IEEE Access 2018; 6:

58418–58426.

26. Sha L, Abdelzaher T, Arzén K, et al. Real time scheduling

theory: a historical perspective. Real-Time Syst 2004; 28:

101–155.

27. Burns A and Wellings A. Implementing analysable hard real-

time sporadic tasks in Ada 9X. ACM Sigada Ada Lett 1994;

XIV: 38–49.

28. Buttazzo G. Rate monotonic vs. EDF: judgment day. Real-

Time Syst 2005; 29: 5–26.

29. Ramamritham K and Stankovic J. Scheduling algorithms

and operating systems support for real-time systems. P IEEE

1994; 82: 55–67.

30. Baker T. Multiprocessor EDF and deadline monotonic sche-

dulability analysis. In: 24th IEEE real-time systems sympo-

sium, Cancun, Mexico, 5 December 2003, pp. 120–129. New

York: IEEE.

31. Bernat G, Colin A and Petters S. WCET analysis of probabil-

istic hard real-time systems. In: 23rd IEEE real-time systems

symposium, Austin, TX, 3–5 December 2002, pp. 279–288.

New York: IEEE.

32. Edgar S and Burns A. Statistical analysis of WCET for sche-

duling. In: 22nd IEEE real-time systems symposium (RTSS

2001), London, 3–6 December 2001, pp. 215–224. New

York: IEEE.

33. Becker M and Chakraborty S. 21st international workshop

on software and compilers for embedded systems. In: 21st

international workshop on software and compilers for

embedded systems, Sankt Goar, 28–30 May 2018, pp. 10–

13. New York: Association for Computing Machinery.

34. Meng F, Sun H and Wang J. Survey on estimation and optimi-

zation of worst-case execution time with energy consumption

constraint. In: 12th international conference on computational

intelligence and communication networks (CICN), Bhimtal,

India, 25–26 September 2020, pp. 316–320. New York: IEEE.

35. Gunzel M, von der Bruggen G and Chen J. Suspension-aware

earliest-deadline-first scheduling analysis. IEEE T Comput

Aid D 2020; 39: 4205–4216.

36. Sun Y and Lipari G. A weak simulation relation for real-

time schedulability analysis of global fixed priority schedul-

ing using linear hybrid automata. In: 22nd international con-

ference on real-time networks and systems, Versailles, 8–10

October 2014, pp. 35–44. New York: Association for

Computing Machinery.

37. Guo Z, Bhuiyan A, Liu D, et al. Energy-efficient real-time

scheduling of DAGs on clustered multi-core platforms. In:

IEEE real-time and embedded technology and applications

symposium (RTAS), Montreal, QC, Canada, 16–18 April

2019, pp. 156–168. New York: IEEE.

38. Joseph M and Pandya P. Finding response times in a real-

time system. Comput J 1986; 29: 390–395.

39. Moghadam M, Saadatmand M, Borg M, et al. Learning-

based response time analysis in real-time embedded systems:

a simulation-based approach. In: IEEE/ACM 1st interna-

tional workshop on software qualities and their dependen-

cies (SQUADE), Gothenburg, May 2018, pp. 21–24. New

York: IEEE.

40. Blazewicz J, Ecker K, Pesch E, et al. Scheduling imprecise

computations. In: Handbook on scheduling. Cham: Springer,

2019, pp. 527–576, https://link.springer.com/chapter/

10.1007/978-3-319-99849-7_14

41. Huang L, Hou I, Sapatnekar S, et al. Graceful degradation of

low-criticality tasks in multiprocessor dual-criticality sys-

tems. In: 26th international conference on real-time networks

and systems, Chasseneuil-du-Poitou, October 2018, pp. 159–

169. New York: Association for Computing Machinery.

42. Stavrinides G and Karatza H. Fault-tolerant gang scheduling

in distributed real-time systems utilizing imprecise computa-

tions. SIMULATION 2009; 85: 525–536.

43. Huang L, Li Y, Sapatnekar S, et al. Using imprecise comput-

ing for improved non-preemptive real-time scheduling. In:

55th ACM/ESDA/IEEE design automation conference

(DAC), San Francisco, CA, 24–28 June 2018, pp. 1–6. New

York: IEEE.

44. Guo C, Zhu C and Tay T. Design and simulation of a green

broker with imprecise computation scheduling for energy-

efficient large scale computing in clusters. J Emerg Trends

Comput Inf Sci 2013; 4: 900–907.

45. Esmaili A, Nazemi M and Pedram M. Energy-aware sche-

duling of task graphs with imprecise computations and end-

to-end deadlines. ACM T Des Automat El 2020; 25: 1–21.

46. Stavrinides G and Karatza H. A cost-effective and QoS-

aware approach to scheduling real-time workflow applica-

tions in PaaS and SaaS clouds. In: 3rd international

16 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

conference on future internet of things and cloud, Rome,

24–26 August 2015, pp. 231–239. New York: IEEE.

47. Pazzaglia P, Sun Y and Natale M. Generalized weakly hard

schedulability analysis for real-time periodic tasks. ACM T

Embed Comput S 2021; 20: 1–26.

48. Hong J, Song H, Kim T, et al. A real-time discrete event sys-

tem specification formalism for seamless real-time software

development. Discrete Event Dyn S 1997; 7: 355–375.

49. Moallemi M and Wainer G. Modeling and simulation-driven

development of embedded real-time systems. Simul Model

Pract Th 2013; 38: 115–131.

50. Mello B and Wainer G. Scheduling predictability in I-DEVS

by schedulability analysis. In: Symposium on theory of mod-

eling and simulation, Pasadena, CA, 3–6 April 2016, pp. 1–

8. New York: IEEE.

51. Manolache S, Eles P and Peng Z. Schedulability analysis of

applications with stochastic task execution times. ACM T

Embed Comput S 2004; 3: 706–735.

52. Nasri M, Baruah S, Fohler G, et al. On the optimality of RM

and EDF for non-preemptive real-time harmonic tasks. In:

22nd international conference on real-time networks and

systems, Versailles, 8–10 October 2014, pp. 331–340. New

York: Association for Computing Machinery.

53. Kim K, Kang W, Sagong B, et al. Efficient distributed simu-

lation of hierarchical DEVS models: transforming model

structure into a non-hierarchical one. In: 33rd annual simula-

tion symposium (SS 2000), Washington, DC, 16–20 April

2000, pp. 227–233. New York: IEEE.

54. Shang H and Wainer G. Dynamic structure DEVS:
improving the real-time embedded systems simulation and
design. In: 41st annual simulation symposium, Ottawa,
ON, Canada, 13–16 April 2008, pp. 271–278. New York:
IEEE.

55. Chow A, Zeigler B and Kim D. Abstract simulator for the
parallel DEVS formalism. In: Fifth annual conference on AI,
and planning in high autonomy systems, Gainesville, FL, 7–
9 December 1994, pp. 157–163. New York: IEEE.

Author biographies

Braulio A Mello is a professor at Federal University of
Fronteira Sul, Department of Computer Science, Chapecó-
SC, Brazil. He has a PhD in Computer Science from
Federal University of Rio Grande do Sul, Brazil. His e-
mail address is braulio@uffs.edu.br.

Gabriel A Wainer, FSCS, is professor at Department
of Systems and Computer Engineering, Carleton
University (Ottawa, ON, Canada). He is an ACM
Distinguished Speaker and a Fellow of SCS. His current
research interests include modeling methodologies and
tools, parallel/distributed simulation, and real-time sys-
tems. His e-mail and web addresses are gwainer@sce.-
carleton.ca and https://www.sce.carleton.ca/faculty/
wainer.

Mello and Wainer 17

